Automation and Their Application in Autonomous Cars

In my day job, I am a First Officer on private jets. I am a professional pilot who flies all over the country to take the affluent where they need to go. One day I was flying into Baltimore Washington International Airport (BWI) to pick up another airplane so, as a crew, we could fly our customer to his home. The aircraft had been on the ground for about a week and a half. It didn’t make sense to keep us on-site for a week (and pay hotel, rental car, and meal expenses) so we flew home. I flew home back that morning and planned to meet my Captain at the jet, located at one of the satellite airports to BWI. I grabbed an Uber from BWI to the smaller airport and along the way my driver and I listened to the news. This day coincided with reports of yet another Tesla autopilot malfunction, pointing to the possibility of a recall of their automated systems. My Uber driver began asking about autopilot systems (since he knew I was a jet pilot) and it started me thinking.

The Aviation Industry has been dealing with the onset of automation for over 30 years. As computers and technology have become more advanced, smaller, and smarter, the level of automation has also increased. Today, modern airliners and private jets can literally takeoff and land by themselves, with as little as only weight and course information input by the pilot. However, the onset of automation also breeds an innate desire to trust the computer and disengage. The aviation industry took note of this early, and instruction in autopilot systems and knowledge has become a key part of any advanced pilot training program.

Automation was introduced into cockpits after the Korean War. One of the early tests involved a new system known as an “inertial navigation system” that was able to fly the airplane to a destination based on nothing more than measuring its inertia. In these early days, the pilot still manipulated the flight controls, but responded to a computer input that “dead reckoned” the position of the aircraft based solely on its movement. In the 1980s, computer systems and the advent of computer-controllable servos lead to the introduction of autopilot systems in aircraft. During the ensuing auto-pilot technology revolution, and the additional coupling of GPS to these systems, aircraft automation became more and more capable — but not without accidents.